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A Note on the Application of Edge-Elements for
| Modeling Three-Dimensional
Inhomogeneously-Filled
Cavities
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Abstract—The application of edge-elements for modeling
three-dimensional inhomogeneously-filled cavities is presented
in this paper. Explicit representations for the two element ma-
trices, [S], and [T],, are provided in order to facilitate the im-
plementation of the FEM formulation. Also included are the
results of a numerical experiment that investigates the rate of
convergence of the computation of the dominant resonance fre-
quency of a rectangular cavity when the edge-element formu-
lation is employed.

I. INTRODUCTION

HE ANALYSIS of inhomogeneously-filled cavities is

important in many applications, e.g., the design of
microwave filters and ovens. For all but a few simplest
three-dimensional configurations, this analysis must be
carried out numerically. The numerical methods that are
available for analyzing three-dimensional cavities are: the
transmission line matrix method [1], the finite difference
methods [2], and the finite element methods (FEMs) [3],
[4]. Among these, FEM offers the most flexibility in mod-
eling cavities with arbitrary geometries as well as with
highly inhomogeneous fillings. However, it is well known
that the finite element analysis of high-frequency electro-
magnetic problems is plagued by the occurrence of non-
physical, spurious modes [4].

A number of recent publications have suggested var-
ious approaches to eliminating the spurious modes. Rah-
man and Davies [5] have used a penalty function to en-
force the divergence-free condition. The penalty function
approach makes the numerical solution depend on a pa-
rameter whose precise effect on the solution is often dif-
ficult to assess. Kobelansky and Webb [6] proposed the
use of divergence-free fields as the bases in the variational
procedure. Unfortunately, this approach requires inten-
sive computation time to obtain an accurate solution.

A different approach to eliminating the spurious modes
is to use edge-elements [7]. Edge-elements are recently-
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developed finite-element bases for vector fields, which
have the unique property that the degrees of freedom as-
sociated with these elements are the circulations of the
vector field along the edges of the mesh. With edge-ele-
ments, only the tangential continuity of the vector field is
imposed across element boundaries. The advantages of
edge-elements are: (i) They impose the continuity of only
the tangential components of the electric and magnetic
fields, which is consistent with the physical constraints on
these fields; (ii) The interfacial boundary conditions are
automatically obtained through the natural boundary con-
dition in the variational process; and, (iii) Dirichlet
boundary condition can be easily imposed along the ¢le-
ment edges.

In this paper, we apply the edge-element formulation
to the solution of inhomogeneously-filled cavities. The
application of edge-elements to modeling three-dimen-
sional cavities has been presented in [8], [9]. Two prin-
cipal contributions of this paper are: (i) The element ma-
trices for the corresponding variational functional are
provided explicitly; and, (ii) The rate of convergence of
edge-elements for calculating the resonant frequency of
cavities is determined through a numerical experiment for
an air-filled rectangular cavity.

The paper is organized as follows: Section II presents
the variational formulation of three-dimensional inhomo-
geneously-filled cavities. The solution procedure of the
variational formulation in a finite-dimensional space, or
the finite element implementation, is presented in Section
III. To perform the convergence study, we need to divide
an initial mesh into similar but finer meshes. A simple
mesh-division algorithm, which divides a tetrahedron into
eight smaller tetrahedra, is presented in Section IV, along
with the results of the convergence study for a canonical
cavity problem. Numerical results are included in Section
V. Finally, a brief conclusion is given in Section VI.

II. VARIATIONAL FORMULATION

The basic equations that govern EM fields in source-
free, time-harmonic regions are the Maxwell equations

V X E = —jopH 1)
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V X H = jweE )

where € and p are the permittivity and permeability, re-
spectively. We note that, with w # 0, (1) and (2) imply
that

V.uH =0 3)
V-eE=0 C)

The substitution of E from (2) into (1) and of H from nH
into (2) yields the vector wave equations:

1 - —
V X~V XE =k%E (5)
Br
1 - ” —
VX—=VXxH=kuH (6)
67’

where k? = w?ug€q, €, po are the permittivity and perme-
ability of air, respectively. In view of the similarity be-
tween (5) and (6), the analysis in this paper will be pre-
sented in terms of the electric field E: the parallel devel-
opment for the magnetic field H is obtained by making the
substitutions £ — Hand p — €.

It is well known that the field solution in a three-di-
mensional cavity can be formulated in a variational form
[10]. If the cavity contains only lossless materials, the
variational functional in terms of E can be written as

- 1 - -
RE) = | 219 EP - ReliFam o

From the functional (7), we note that both V x Eand E
need to be square integrable. Consequently, the solution
is sought from the function space L2, (), which is de-
fined by

L2 = {EeLX@:V x EcLX@} (8

where L*(Q) is the linear space of square-integrable vector
fields defined on the problem domain €.

III. FINITE-DIMENSIONAL DISCRETIZATION

The variational formulation in the previous section
seeks the solution in the function space L2, (Q) which is
infinite-dimensional. In order to solve a three-dimen-
sional cavity problem on a digital computer, we need to
convert the original continuum problem into a discretized
version. This can be accomplished by using the finite ele-
ment method. The basic idea of FEM can be described as
follows [7]. First, we formulate the corresponding vari-
ational functional and the admissible function space, for
example, LZ,;(Q) as in previous section. Then restrict the
class to a smaller, finite dimensional function space W(Q),
which can be described by a finite number of parameters
(the degrees of freedom). If this constraint is imposed
properly, stationarity will occur at a point which is in the
neighborhood of the true solution. Finally, imposition of
the stationarity condition leads to a finite number of equa-
tions with respect to the degrees of freedom.
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The approximate solution E’app of (7) in the function
space W(Q), where W(Q) C L24(Q), is the stationary
point of the functional (7) in W({) with respect to the vari-
ations of E. Whatever the choice of the function space
W(Q), the functional F(E) in W(Q) may be expressed in
a matrix form as

- 1, K,
F(E)=§e[S]e—5e[T]e. C)]

Here, e is the coeflicient vector and the square matrices
{S] and [T] are given by

S1o = | Loy @xaya o

2

(Tl = |, e, - d, o an
Q

where &/ s are the vector functions that are used to span
the vector function space W(Q).

In the present approach, the problem domain € is bro-
ken into tetrahedra within which the material properties e,
and p, are constant, although they may be discontinuous
across the element boundaries. In each tetrahedron, the
electric field is expressed as a linear combination of edge-
elements, i.e., we write

E=2 e, W,

1<y

(12)

where W, = \,VN; — N\, V\;, \; is the barycentric function
of node i, is the Whitney 1-form associated with edge {i,
7} [7]. The derivations of the element matrices, [S], and
[T]., of edge-elements in a tetrahedral mesh is the topic
of the next section.

3.1 Element Matrices

In the finite element method, the global matrices [S]
and [77] of (9) are the assembly of the element matrices,
[8], and [T1],, i.e.

wr=§mh (13)

7] = % [T].. (14)
The constructions of the element matrices, [S], and [T],
depend on the choice of the finite dimensional function
space W(£2). In the present approach, W(Q) is spanned by
edge-elements on a tetrahedral mesh. Shown in Fig. 1 is
the configuration of edge-element in a tetrahedron. The
geometrical identities that are useful in the derivation,
given below are

i
VAN = — 1
N=3 (15)
14 -
Ai X ]= 75‘("1)] th
s=sgn (712X f13° £10) (16)
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Fig. 1. Edge-element on a tetrahedron.

for i < j. Here, A; is the area normal of the triangular face { j, k, I} pointing into the tetrahedron, V is the volume
of the tetrahedron, 7, ;is a vector from node k to node /, and {k, I} = {0, 1,2, 3} — {i,j}, with k < I. With these
identities, V X E can be written as

VXE=-=2¢d x4 =— 2 e (—-1)7"%,
g2 /2 ot X A = 3y g DT
~1ly3
t13
s AW
=—leq en en en e exn] R (17
k14 ~ 704
Lo
[~ o1
Finally, the element matrix [S], is expressed as
— 12,3
I3
[S]e=g -5 o “[-ty3 fi3 —t1a —tos toz —fo,1]3—VdQ
e u, 3V — %03
19,2
|~ fo.1
fra3° Ia3
—ty3° I3 13 I3
1 12 Ia3 —Ut12° 113 t12° t12 (18)
.V fo3 " fa3 —loszc I3 Loz * I, fo3* fos
~to2 " Iy3 foa* t1s —lg2* fyo —top " tos fo2 " too
» to1° a3 —fo1 " f13 Top " f1 fo,1 " tos —fo1* toa2 foi lo_l_J
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Also, the matrix [T], can be written as

[ 0.1 |
Wo,2
(Tl = S € YOVS ’ [‘7’0,1 V_‘;o,z W’o,3 Wiz v_‘51,3 Wz,a] aQ
¢ Wi,2
Wi3
| V23 |
20l — 7
Ioy + 1Ipy)
Ioo — Iox 2(Iy —
—Ip + 2y Ip + Ip)
Ioo — Iy Ioo = Inp 2(Ioo —
; —Ipy + 20, —lps + 2Ly I + I3)
>18(r)V Iy ~ I, 200 — Iy Iy — I3 2y —
=2y + 1y —lp t+ Iy —ln tIn I + L)
In — Iy I — Iy 20y ~ I3 Ly — I 2, — (19)
=2y + Iy —lp + Ly —lg+ Ly —Iiz+ 2Ly Iz + b
Iy = I Iy — I 2p — Ly 1y — Iy 2Ly — DLy 2y -
Iy + Ly —2s + Dy —loy + Ly 203t by —ly + Il Dyt IasU

—

where [;; = Zi - 4;.

3.2 Transformed Generalized Eigenmatrix Equation

The stationary points of the functional F (E ) in (9) cor-
respond to the solutions of the following generalized ei-
genmatrix equation

[S]e = k[T]e. (20)

Note that the global matrices [S]}and [T] are semi-definite
and positive-definite real-symmetric matrices, respec-
tively. Despite their sparse nature, the dimension of the
generalized eigenmatrix equation is large and, hence, only
iterative methods can be used to solve (20). The Lanczos
algorithm [11] has been used, with much success, to solve
symmetric generalized eigenmatrix equations. However,
since in (20) the more dominant mode corresponds to
smaller cigenvalue &2, the direct application of the Lanc-
zos algorithm may converge rather slowly. This problem
can be circumvented, however, and a computationally ef-
ficient algorithm can be derived by rewriting (20). To this
end, we first find an estimate k;, the lower bound of the
physical modes, which can be approximated from the
largest dimension and the material properties inside the
cavity. We then rewrite (20) as

[Alx = NBlx 21

where [4] = [T], X = (1/k* + k}) and [B] = [S] +
kg, [T]. The advantage of using (21) is that, except for the

null vectors of the curl operator, the more dominant modes
correspond to the larger eigenvalues of this equation. Due
to the nature of the Krylov subspace iteration, the larger
eigenpairs almost always converge faster. Therefore, by
rearranging the generalized eigenmatrix equation into
(21), the resonant modes of the cavity can be computed
more or less in the order of dominance.

The convergence of the Lanczos algorithm for the dom-
inant mode, with k% # 0, can be improved drastically by
selecting an initial vector which is orthogonal to the null
(k* = 0) eigenpairs [14].

IV. CONVERGENCE STUDY

One criterion for the acceptability of a numerical al-
gorithm is its rate of convergence. For a FEM implemen-
tation, this rate can be estimated in two ways, viz., from
the numerical theories and from systematic numerical ex-
periments. Theoretically, the rate of convergence is a
consequence of the consistency and stability analyses [12].
The consistency and stability analyses of present ap-
proach for modeling three-dimensional cavities will be re-
ported in a later paper. In this section, we present a
method for obtaining the rate of convergence for un-struc-
tured tetrahedral meshes through numerical experiments.

To be able to conduct a systematic convergence study
of FEM on tetrahedral meshes, we need to generate sim-
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Fig. 2. A factor-of-two mesh division.

ilar but finer meshes by subdividing a coarse one. Fig. 2
shows a mesh division of a tetrahedron into eight smaller
tetrahedra. We call such a scheme ‘factor-of-two mesh
refinement.”’ In general, the eight smaller tetrahedra gen-
erated from The “‘factor-of-two mesh refinement’” do not
completely resemble the original tetrahedron. For the
practical application, however, the finer mesh obtained by
using the ‘‘factor-of-two mesh refinement’’ does provide
a satisfactory similarity to the original mesh. The follow-
ing table summarizes the ‘‘factor-of-two mesh refine-
ment:”’

tetra {0, 4, 5, 6}
tetra {1, 4, 7, 8}
tetra {2, 5, 7, 9}
tetra {3, 6, 8, 9}
tetra {0, 1, 2,3} =
tetra {4, 5, 6, 8}
tetra {4, 5, 7, 8}
tetra {5, 7, 8, 9}
tetra {5, 6, 8, 9}

(22)

The test geometry of the experiment is an air-filled rect-
angular cavity with dimensions 1 m X 2 m X 2 m, as
shown in Fig. 3, and the TEy mode is dominant with a
resonant frequency of f; = 106.066 MHz. The experi-
ment starts with a very coarse tetrahedral mesh, and de-
fines the cell size A = 1. The ‘‘factor-of-two mesh reﬁne—
ment’’ is then used to generate finer meshes with 2 = 5
h = %. etc. For each tetrahedral mesh, we compute the
resonant frequency of the cavity using the procedure out-
lined above and then calculate the relative error to the
exact resonant frequency. The result is shown in Fig. 4.
The convergence is governed by € « k", where e is the
relative error and # is the value of the index to be deter-
mined, i.e., the rate of convergence. From Fig. 4, we see

2

Fig. 3. An air-filled rectangular cavity.
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Fig. 4. Plot of the relative error of the numerical result versus the cell size
for the cavity in Fig. 3.
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Fig. 5. Plot of the computation time versus the relative error for the cavity
in Fig. 3.

that the index n is very close to 2. This leads us to con-
clude that the use of the edge elements yields a second-
order accuracy. This is not surprising, however, since the
resonant frequency is a variational quantity in the func-
tional (9) and, therefore, it often offers better accuracy
than the computed vector fields E and H. We should also
point out that the second-order accuracy for computing
the resonant frequency is only valid for cavity mode whose
field distribution is smooth. For cavities that have re-en-
trant points, as described in [12], the convergence rate is
expected to be worse.

A plot of the computation time vs. the accuracy is pro-
vided in Fig. 5. From Fig. 5, we see that, once again, the
slope is very close to 2. This can be explained as follows.
To apply the Lanczos algorithm for the solution of a gen-
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b/a=3/10
c/a=4/10
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©

Fig. 6. Three cavity structures; (a) a circular cavity, (b) a rectangular cav-
ity loaded with dielectric slab, and (c) a rectangular cavity with a block of.

dielectric.

eralized eigenmatrix equation (21), each iteration step in-
volves the solution of a matrix equation of the form
v=1[Bl""y (23)
where v is the updated Krylov vector generated through
iteration upon y. Since [B] is a positive-definite matrix,
we have used the Polynomial-Preconditioned Conjugate
Gradient (PPCG) [13] method to solve the matrix equa-
tion efficiently. Therefore, the total computation time of
present approach can be written as
cpu time oc [ X T (24)
where [ is the number of iterations in the Lanczos algo-
rithm, and T is the computer time to solve (23) using
PPCG method. In general, the number of iterations !
would be expected to increase with the refinement of the
mesh. However, we found in this study that, / changes
relatively little with the increase in the mesh density. As
a result, the matrix solution time 7 increases as
T o N14333 (25)
for finer meshes, where N is the degrees of freedom. Fur-

thermore, in three dimensions, we have N « k3. Based
on above discussions and the fact that ¢ oc A2, we finally

arrive at the conclusion that

cpu time o €2,

(26)

V. NUMERICAL RESULTS

A general finite-element computer program has been
written to implement the numerical procedure presented
in this paper and, the transformed generalized eigenma-
trix equation has been solved by using the Lanczos algo-
rithm.

To validate the current approach, numerical results for
a circular cavity, a rectangular cavity loaded with dielec-
tric slab, and a rectangular cavity containing a rectangular
block of dielectric have been tested. The geometries and
the material properties of these three cavities are shown
in Fig. 6. Table I summarizes the numerical results. From
Table I, we note that accurate resonant frequencies (within
1% error) are obtained for various cavity structures with
at most 30 seconds of cpu time on a Decstation 5000/200
machine. We also note from Table I that, it takes a much
longer time to compute the resonance of the circular cav-
ity than it does for the rectangular one. This is owing to
the fact that many triangular patches are needed to accu-
rately represent a curved surface. Consequently, the de-
grees of freedom needed to model the structure in Fig.
6(a) is considerably larger than those required in Fig.
6(b) and (c).
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TABLE I
NUMERICAL RESULTS WITH COMPARISONS TO EXACT OR MEASURED VALUES FOR THREE CAVITIES IN FIG. 6
ka
. Exact or Relative Error cpu Time
Geometry Measured Value Computed (%) (seconds)
Fig. 6(a) 2.403 2.429 1.02 29.05
Fig. 6(b) 2.5829 2.59413 0.4348 0.65
Fig. 6(c) 5.2 Albani] 5.159 1.167 1.16

VI. CONCLUSIONS

A new vector finite element approach for solving elec-
tromagnetic problems, which is based on the use of edge
elements, has been presented in this paper. The element
matrices for edge-elements for analyzing three-dimen-
sional cavity structures have been derived. By expressing
the entries in the element matrices in terms of geometric
quantities, the edge-elements approach can be readily ap-
plied to many other engineering applications.

We have also conducted a numerical experiment to de-
termine the rate of convergence of using the edge-ele-
ments to compute the dominant resonant frequency of a
rectangular cavity. Although, the vector field is approxi-
mated within each tetrahedron by an incomplete first-or-
der polynomial, the computed resonant frequency is found
to be second-order accurate because of its variational na-
ture.
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